Ìܼ¡

¹çƱ¼°

[Îã]815013723¢á3 (mod 4)¤¬À®¤êΩ¤Ä¤³¤È¤ò³Î¤«¤á¤ë¡£

815013723
=815013700¡ß100+23
¢á815013700¡ß0+23 (mod 4)¡¡¡Ê¢è100¢á0 (mod 4))
¢á23 (mod 4)
¢á20+3 (mod 4)
¢á3 (mod 4)¡¡(¢è20¢á0 (mod 4))¡¡¡þ

[Îã]271¢á-17¡ß6833 (mod 5)¤¬À®¤êΩ¤Ä¤³¤È¤ò³Î¤«¤á¤ë¡£

22¢á-1 (mod 5)¤ò³èÍѤ¹¤ë¤È¡¢

271¢á22¡ß35+1¢á(-1)35¡ß2¢á-2 (mod 5)¡¡¢«(*)

¤Ë¤Ê¤ë¡£

¤Þ¤¿¡¢6¢á1 (mod 5)¤Ç¤¢¤ë¤³¤È¤«¤é¡¢

6833¢á1833¢á1 (mod 5)

¤È¤Ê¤ë¡£

¼¨¤·¤¿¤¤¹çƱ¼°¤Î±¦Êդϡ¢

  • 17¡ß6833¢á-17¡ß1¢á-2 (mod 5)¡¡¢«(**)

¤È¤Ê¤ë¡£

¤·¤¿¤¬¤Ã¤Æ¡¢(*)¤È(**)¤Ï°ìÃפ¹¤ë¡£¡¡¡þ

[ÌäÂê]11|(213¡ß317+519¡ß724)¤ò¼¨¤»¡£

¹çƱ¼°x2¢á-1 (mod p)

¡¡¤É¤ó¤ÊÁÇ¿ôp¤Ë¤Ä¤¤¤Æ¡¢¼¡¤Î¹çƱ¼°¤Ï²ò¤ò»ý¤Ä¤Î¤«¡¢¤Ä¤Þ¤ê¡¢¤³¤Î¹çƱ¼°¤òËþ¤¿¤¹À°¿ôx¤¬Â¸ºß¤¹¤ë¤¿¤á¤Îp¤Î¾ò·ï¤Ï²¿¤«¤òÄ´¤Ù¤ë¡£

x2¢á-1 (mod p)¡¡¢«(*)

¡¡¤³¤Î¹çƱ¼°¤Î²ò¤È¤·¤Æ¤Î¢å(-1)¤Ï¡¢µõ¿ôñ°Ì¤Îi(=¢å(-1))¤È¤Ï¤Þ¤Ã¤¿¤¯ÊÌʪ¤Ç¤¢¤ë¡£

[Îã]p=7¤Î¾ì¹ç¤Ë¡¢(*)¤ò¹Í»¡¤¹¤ë¡£

7¤òË¡¤È¤·¤ÆÊ¿Êý¤ò·×»»¤¹¤ë¤È¡¢¼¡¤Îɽ¤¬ÆÀ¤é¤ì¤ë¡£

x0123456
x20149¢á216¢á225¢á436¢á1
  • 1¢á6 (mod 7)¤Ç¤¢¤ê¡¢É½¤Îx2¤Î¹à¤Ë¤Ï6¤¬¸½¤ì¤Ê¤¤¤Î¤Ç¡¢x2¢á-1 (mod 7)¤Ë²ò¤¬¤Ê¤¤¤³¤È¤¬¤ï¤«¤ë¡£¡¡¡þ

[Îã]p=13¤Î¾ì¹ç¤Ë¡¢(*)¤ò¹Í»¡¤¹¤ë¡£

x0123456789101112
x201493121010123941
  • 1¢á12 (mod 13)¤Ç¤¢¤ê¡¢É½¤Îx2¤Î¹à¤Ë¤Ïx¢á5¤È8¤Î¤È¤­¤Ë12¤¬¸½¤ì¤ë¤Î¤Ç¡¢x¢á5¤È8¤Î¤È¤­¤Ëx2¢á-1 (mod 13)¤Ï²ò¤ò»ý¤Ä¡£¡¡¡þ

¡¡¾åµ­¤ÎÎã¤Ë¤è¤ê¡¢p=7¤Î¤È¤­¤Ë¤Ï(*)¤Ï²ò¤ò»ý¤¿¤º¡¢p=13¤Î¤È¤­¤Ë¤Ï(*)¤Ï²ò¤ò»ý¤Ä¡£¤³¤Î¤è¤¦¤Ëp¤ÎÃͤˤè¤Ã¤Æ¡¢(*)¤¬²ò¤ò»ý¤Ä¤«¤É¤¦¤«¤¬·è¤Þ¤ë¡£

¡¡¼Â¤Ï¡¢(*)¤¬²ò¤ò»ý¤Ä¾ò·ï¤Ï¡¢p=2¤Þ¤¿¤Ïp¢á1 (mod 4)¤Ç¤¢¤ë¤³¤È¤¬¤ï¤«¤Ã¤Æ¤¤¤ë¡£Â¨¤Á¡¢p¤Î¾ò·ï¤ÏÍ£°ì¤Î¶öÁÇ¿ô¤Ç¤¢¤ë2¤Ç¤¢¤ë¤«¡¢1·¿¤ÎÁÇ¿ô¤Ç¤¢¤ë¤³¤È¤Ç¤¢¤ë¡£
¡¡p=13¤Ï1·¿¤ÎÁÇ¿ô¤Ç¤¢¤ë¤¿¤á¡¢(*)¤¬²ò¤ò»ý¤Ä¾ò·ï¤òËþ¤¿¤¹¡£

[ÊäÂê]p¤¬ÁÇ¿ô¤Î¤È¤­¡¢¹çƱ¼°x2¢á1 (mod p)¤Î²ò¤Ï¡¢x¢á¡Þ1 (mod p)¤À¤±¤Ç¤¢¤ë¡£

[¾ÚÌÀ]À°¿ôx¤¬x2¢á1 (mod p)¤òËþ¤¿¤¹¤È¤¹¤ë¡£

¤¹¤ë¤È¡¢p|(x2-1)¤Ç¤¢¤ë¡£

p|(x-1)(x+1)¡¡¡Ê¢èx2-1=(x-1)(x+1)¡Ë

¤³¤Î¤È¤­¡¢p¤ÏÁÇ¿ô¤Ç¤¢¤ë¤«¤é¡¢p|(x-1) or p|(x+1)¤¬À®¤êΩ¤Ä¡£¤³¤ì¤Ï¡¢x¢á1 (mod p) or x¢á-1 (mod p)¤¬À®¤êΩ¤Ä¤È¤¤¤¦¤³¤È¤Ê¤Î¤Ç¡¢ÊäÂ꤬¾ÚÌÀ¤µ¤ì¤¿¡£¡¡¢¢

[ÄêÍý]¹çƱ¼°x2¢á-1 (mod p)¤¬²ò¤ò»ý¤Ä¤¿¤á¤ÎɬÍ×¾òʸ¾ò·ï¤Ï¡¢p=2 or p¢á1 (mod 4)¤Ç¤¢¤ë¡£

[¾ÚÌÀ][1]p=2¤Î¤È¤­¡¢x2¢á-1¢á1 (mod 2)¤È¤Ê¤ê¡¢x=1¤¬²ò¤È¤Ê¤ë¡£¤è¤Ã¤Æ¡¢p=2¤Î¤È¤­¤Ë¡¢(*)¤Ï²ò¤¬¤¢¤ë¡£

[2]p¤¬´ñÁÇ¿ô¤Î¤È¤­

(i)p¢á3 (mod 4)¤Î¾ì¹ç¡¢Â¨¤Á3·¿¤ÎÁÇ¿ô¤Î¾ì¹ç¤Ë¡¢(*)¤¬²ò¤ò»ý¤¿¤Ê¤¤¤³¤È¤ò¼¨¤¹¡£

ÇØÍýË¡¤òÍѤ¤¤ë¡£(*)¤Î²ò¤È¤Ê¤ëÀ°¿ôx¤¬Â¸ºß¤·¤¿¤È²¾Äꤹ¤ë¡£

¤³¤Î¤È¤­¡¢x4¢á(-1)^2¢á1 (mod p)¤¬À®¤êΩ¤Ä¤Î¤Ç¡¢x¤Îp¤òË¡¤È¤¹¤ë°Ì¿ôordp(x)¤Ï4¤ÎÌó¿ô¤Ç¤¢¤ë¡£

¤·¤«¤·¡¢(*)¤Ë¤è¤ê¡¢x2¡â1 (mod p)¤Ç¤¢¤ë¡Êp¤¬´ñ¿ô¤Ê¤Î¤Ç¡¢-1¡â1 (mod p)¤Ç¤¢¤ë¡Ë¡£
¤¹¤ë¤È¡¢4|¦Õ(p)¤Ç¤¢¤ë¡£¤Ê¤¼¤Ê¤é¤Ð[Ì¿Âê]¡Ö(a,m)=1¤È¤·¡¢d=ordm(a)¤ÈÃÖ¤¯¡£À°¿ôk¤Ë¤Ä¤¤¤Æ¡¢ak¢á1 (mod m)¤È¤Ê¤ë¤¿¤á¤ÎɬÍ×½½Ê¬¾ò·ï¤Ï¡¢d|k¤Ç¤¢¤ë¡×¤¬À®¤êΩ¤Ä¤«¤é¤Ç¤¢¤ë¡£

4|¦Õ(p)
4|p-1¡¡¡Ê¢è¦Õ(p)=p-1¡Ë

¤·¤«¤·¡¢¤³¤ì¤Ïp¢á3 (mod 4)¤È¤¤¤¦²¾Äê¤ËÌ·½â¤·¤Æ¤¤¤ë¡£

¤è¤Ã¤Æ¡¢p¤¬3·¿¤ÎÁÇ¿ô¤Î¤È¤­¤Ë¤Ï¡¢(*)¤Ë¤Ï²ò¤¬¤Ê¤¤¡£

(ii)p¢á1 (mod 4)¤Î¾ì¹ç¡¢Â¨¤Á1·¿¤ÎÁÇ¿ô¤Î¾ì¹ç¤Ë¡¢(*)¤¬²ò¤ò»ý¤Ä¤³¤È¤ò¼¨¤¹¡£

¾ÚÌÀÊý¿Ë¤È¤·¤Æ¤Ï¡¢¥¦¥£¥ë¥½¥ó¤ÎÄêÍý¤òÍѤ¤¤Æ¡¢(*)¤Î²ò¤òºî¤ë¡£

1¤«¤ép-1¤Þ¤Ç¤Îp-1¸Ä¤Î¿ô¤ò¡¢¡ÖÁ°È¾¡×¡Ê1¤«¤é(p-1)/2¤Þ¤Ç¡Ë¤È¡Ö¸åȾ¡×¡Ê(p+1)/2¤«¤ép-1¤Þ¤Ç¡Ë¤Ëʬ¤±¤Æ¡¢Á°È¾¤Î¿ô¤¹¤Ù¤Æ¤ÎÀѤòx¤È¤ª¤¯¡£

x=1~\times~2~\times~\cdots~\times~(\frac{p-1}{2})¡¡¢«(1)

¸åȾ¤Î¿ô¤Ë¤Ä¤¤¤Æ¤Ï¡¢°Ê²¼¤ò¹Íθ¤¹¤ë¡£

(p-1)¢á-1,(p-2)¢á-2,¡Ä,(p+1)/2¢á-(p-1)/2 (mod p)

¤³¤ì¤é¤ò¤¹¤Ù¤Æ³Ý¤±¹ç¤ï¤»¤ë¤È¼¡¤¬ÆÀ¤é¤ì¤ë¡£

(\frac{p+1}{2}~\times~\cdots~\times~(p-2)~\times~(p-1)~\equiv~(-1)^{\frac{p-1}{2}}x~\,~(mod~\,~p))
(\frac{p+1}{2}~\times~\cdots~\times~(p-2)~\times~(p-1)~\equiv~x~\,~(mod~\,~p))¡¡¢«(2)¡¡¡Ê¢èp¢á1 (mod 4)¤Ç¤¢¤ë¤³¤È¤«¤é¡¢(p-1)/2¤Ï¶ö¿ô¤Ç¤¢¤ë¡£¤è¤Ã¤Æ¡¢(-1)^{\frac{p-1}{2}}~=~1¡Ë

(1)(2)¤Ë¤è¤Ã¤Æ¡¢¼¡¤¬ÆÀ¤é¤ì¤ë¡£

(p-1)!
=1~\times~2~\times~\cdots~\times~(\frac{p-1}{2})~\times~\frac{p+1}{2}~\times~\cdots~\times~(p-2)~\times~(p-1)
\equiv~x^2~\,~(mod~\,~p))

¥¦¥£¥ë¥½¥ó¤ÎÄêÍý¤è¤ê¡¢(p-1)!¢á-1 (mod p)¤Ê¤Î¤Ç¡¢°Ê²¼¤¬À®¤êΩ¤Ä¡£

x^2~\equiv~-1~\,~(mod~\,~p))

¤è¤Ã¤Æ¡¢x¤¬(*)¤Î²ò¤Ç¤¢¤ë¡£¡¡¢¢

»²¹Íʸ¸¥

  • ¡Ø»»¿ô¤«¤é¤Ï¤¸¤á¤è¤¦¡ª¿ôÏÀ¡Ù